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FOREWORD

This report documents a FORTRAN routine LINOPT for solving linear
programming problems. Upper and lower bounds on all variables are permitted,
and the dual problem includes as a special case linearly-constrained minimum

kl-norm problems. Basic theory, the algorithm used, input-output procedures
and examples of use are included.
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CHAPTER I

INTRODUCTION

REPORT ORGANIZATION

This report documents a FORTRAN subroutine (with associated subroutines)
called LINOPT for solving linear programming (LP) problems. It is divided
into several chapters. Following the INTRODUCTION is a chapter (PROBLEM
FORMAT AND PROGRAM USE) explaining the types of problems which can be solved
by LINOPT, some manipulations on them and correspondences with program
notation. A chapter (SUPPORT FUNCTIONS AND DUALITY IN LINEAR PROGRAMMING)
discusses some of the duality concepts behind the formulation and solution of
LP problems. The next chapter, DUAL SIMPLEX METHOD gives some information
about the algorithm used in the program. EXAMPLES and a LISTING follow.

PROBLEM FORMULATION

A rather abstract formulation of an LP problem in the following: Let X be
a real vector space paired with M under the bilinear form (inner product)
(u,x) -* u.x, ucM, xeX, and let Yi, i -I ...... m be similarly
paired with Ai, i -,..., m. Given pcM, closed convex sets Ci in Yi, and
linear transformations Ai, : X-Yi, i I

maximize 11.x
subject to Aix e Ci, i-I,.... m.

This problem in convex programming has the following as its dual problem:

mminimize m Ci(xi)
"i= I

m ,
subject toE Aix

i- I

where aCi is the support function of the set Ci - see Chapter 3 for
more on support functions. For explanatory purposes it is sufficient to take
each Ai equal to the identity, so that Yi - X, Ai - M, i 1,...,m. Chapter 3
treats this simplified version.

The program LINOPT is set up to handle constraints of the form wi.x s Ci
where Pi e M and Ci is a nonempty closed interval. If some Ci is a
bounded interval of nonzero length, the dual problem has a nonlinear
objective; it is, however, convex and piecewise linear. The details are given
in Chapter 2, where it is shown that the general form of the dual objective is
the sum of two terms, one linear, and one a weighted ZI norm.
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The algorithm used in the program is a form of the revised dual simplex

algorithm modified to handle upper and lower bound constraints. The inverse
matrix used is a row-basis inverse. Accordingly, the algorithm is more
efficient on problems with many constraints. (On problems with fewer
dependent variables than independent variables, a column-basis inverse would
be smaller.) Use of a row basis has definite advantages in modifying a
problem and then reoptimizing.

No new theory is involved in this program. The dual simplex algorithm can
be found in standard linear programming texts. 1 ,2 Insisting that all
variables in the primal problem have both upper and lower bounds makes it
trivial to find a dual-feasible point to start the algorithm, and because of
the resulting asymmetry between primal and dual problems, allows us to handle
directly (via the dual problem) certain piecewise linear convex minimization
problems.

The results from convex analysis used in Chapter 3 can be found in greater
generalization and detail in Rockafellar's book.

3

1lHadley, G., Linear Programming, Addison-Wesley, Reading, 1962.

2 Simmonard, K., Linear Programming, Prentice-Hall, Englewood Cliffs, 1966.

3 Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton,
1970.

6
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CHAPTER 2

PROBLEM FORMAT AND PROGRAM USE

INTRODUCTION

LINOPT is programmed to solve a problem maximizing (or minimizing) a linear
function subject to upper and lower bounds on linear constraint functions.
(The bounds are equal for an equality constraint.) The dual to this problem
has a piecewise linear objective function and linear equality constraints.
Missing bounds in the primal problem correspond to sign constraints on the
dual variables. Such missing bounds can be handled by introducing a penalty
function for the sign constraint violations in the dual problem. An even
simpler and more direct interpretation is that the missing bounds can be
replaced by bounds so large in magnitude that they are effectively infinite.

PRIMAL PROBLEM

Maximize x Subject to b x kb, k-1,..., m+n, where k0{...... m-Fn =k<dk

n

Xn+i -2 n aij x, i-l ..... M.
j=l

The objective variable xko can be expressed by:

Xk0  Cj Xj,

where

j 
5kOj if k0 <__n,

ako-n,j if k0 > n.

The same data also define the dual problem.

DUAL PROBLEM

MinimizeE k n  max {ukbk, Ukbk} subject to

u + )un+i aij I c,, jl,...,n.

The dual objective has another form which is more likely to be recognized in
an application:

m n m ax ~ u k ' m2 k-1m n kmaxuk, Ukbk+ kk uk k-Uk

7 7 (k-k
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Thus the dual objective contains a linear term and a weighted Zl-norm term.

The dual variable uk can be thought of as a Lagrange multiplier for the
constraint xk ([bk , bk].

MISSING BOUNDS; SIGN CONSTRAINTS

The following table (TABLE 1) shows how to prepare primal problems with
missing constraints or dual problems with sign constraints. M is a very large
positive number. (The default value supplied by the program is 10100.)
The first line of the table gives the standard two-sided constraint assumed
by the program. The other lines give the modifications for unilateral and no
constraints. In the modified problem uk is always unconstrained in sign. The
dual objective picks up the original linear term when the sign constraint is
satisfied, and a penalty term when the sign constraint is violated.

When the program gives an optimal solution in which xk = + M for some k,

the original problem has an unbounded solution. If it has a finite solution,
the program will yield it, and it will not depend on M (unless M has been set
so small that it interferes with the "legitimate" constraints). The
calculations are arranged so that roundoff errors due to the disparity in
magnitude between M and the original data do not propagate from iteration to
iteration, and appear within an iteration only if some xk = + M.

The objective variable xko is also formally a constrained variable,
although generally the constraint will be -M <xko.M, i.e. essentially no
constraint at all. Tighter bounds may at times be useful. The constraint
bko.x k iM can be used to answer the question: Is max Xk0bi-? If
the answer to this question is negative, the constraints are inconsistent. As
soon as the inconsistency is detected, the program returns to the calling
program without going on to calculate the solution completely.

8
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PROGRAM NOTATION

Correspondence between the notation herein and the notation of LINOPT is
given in Table 2.

TABLE 2 CORRESPONDING VARIABLES

This TR LINOPT

m M
n N
k 0  IOBJ

Xk X(K)
uk U(K)

k BL(K)
bk BU(K)
aij A(ROW(I) + COL(J))
M BIGM

The FORTRAN variable BIGM is included in the program for the user's
convenience. It supplies a default value (which can be changed) for filling in
the missing bounds. (The user must fill in all bounds, since there is no
provision for keeping track of missing bounds otherwise.)

CONSTRAINT COEFFICIENT STORAGE

The constraint coefficients are referenced in an unusual but flexible way.
Row and column pointer arrays ROW and COL are used to index an array A. The
FORTRAN standard for array storage is by columns (all, a21 , a31 ,...,
a1 2 , a22, a32,..., etc.) Suppose that we have a matrix A stored in an
array dimensioned 10 x 20 and we wish to study a problem whose constraint
coefficients form a submatrix of A, as in

[5I [a57 a53 a59]1 [
81 87 a83 a89 z31

We can set x1 - Z7, x2 = z3, x 3 I Z9, X4 = Y5, x5 m Y8,

ROW(l) = 5, ROW(2) = 8,
COL()- 60, COL(2) = 20, COL3) = 80.

COL(J) is set to the number of elements in the array preceeding the coefficient
column for X(J)- 6 x 10 for the 7th column, 2 x 10 for the 3rd and 8 x 10 for
the 9th. ROW(I) then picks off the appropriate entry in the column. We can
even introduce (by using the LOCF function)columns extraneous to the array
storing A. Consider the modified example:

La87 a84 LbJ

10
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in which x3 = w4. COL(3) is set by

COL(3) = LOCF (BI,4)) - LOCF (A(l,l)).

The columns of B must be structured the same way as the columns of A for this
procedure to work. Instead of having a coefficient matrix stored in the array
in the usual way we could have it transposed, perhaps as a result of starting
with a dual problem. This corresponds to storage by rows (not the FORTRAN
standard). A little reflection indicates that defining ROW the way COL is
defined above, and COL the way ROW is defined handles this storage arrangement.
Further examples are given in the program comments.

INPUT AND OUTPUT

Input and output variables are clearly indicated in the program comments.
(The program is listed in the section titled "LISTINGS".) Arrays are passed as
formal parameters. Scalers are passed by using a labelled common block /XXXLP/,
which must accordingly be a common block in the calling program.

ROUNDOFF CONTROL

In the program there are three input variables which can be used to control
roundoff error accummulations. EPS is a tolerance used in checking constraint
violations. H is also used to zero out coefficients in the tableau which have
small nonzero values (typically for a CDC 60-bit machine, on the order of
10-14) which ought to vanish. Finally constraint violations less than EPS are
eliminated from the optimal solution before returning. For small problems EPS =

0 is generally all right.

The other roundoff - controlling variables are invert (a logical variable)

and ITMAX. When INVERT is TRUE the inverse matrix corresponding to the current
key K is calculated. ITMAX is a limit on the number of iterations. When this
limit is reached control is returned to the calling LINOPT again with INVERT =

TRUE., one may control the building of roundoff error in the inverse matrix
(which otherwise is updated by column operations every iteration). (For small
problems this may not be necessary.)

After obtaining a solution (or after any return from an initial call to
LINOPT) INVERT can be set to FALSE for another call to LINOPT. Certain
modifications to the problem data are permissible at such a time - constraints
may be added, for example. These modifications are any for which the inverse
matrix would be unchanged, and include the following (Note: primary indices:
K(l),...,K(N); secondary K(N + l),...,K(N + M) - see Chapter 4.)

ADDING CONSTRAINTS

M is increased, new elements to ROW are added to point to the new constraint
coefficients (which, if not already defined should be stored appropriately), and
new bounds added to BL and BU.

11
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MODIFYING CONSTRAINTS

Bounds for any secondary variable can be changed. Inactive bounds for

primary variables can be changed. Active bounds for primary variables can be

changed, provided the corresponding solution is also changed; e.g. if X(K(l))

BU(K(l)) and BU(K(1)) Is changed, X(K(l)) must be changed in the same way.
Constraint coefficients for dependent variables X(N + 1),..., X(N + M) which are
also secondary variables can be changed; (these may include the objective
variable) or such constraints can be dropped, with appropriate changes to ROW,
M, BL and BU. (If the constraint corresponding to ROW(I) is dropped, the
simplest way to make these changes is to set ROW(I) - ROW(M), BL(N + I) = BL(N +

M), BU(N + I) - BL(N + M), and then M M H - 1, so that the indexing for X(N + M)
Is changed to X(N + I)).

Of course, when LINOPT is recalled with INVERT TRUE, any problem changes

whatsoever are permissible.

12
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CHAPTER 3

SUPPORT FUNCTIONS AND DUALITY IN LINEAR PROGRAMMING

The support function aC of a convex set C in X is a convex function defined on
M by:

C - (- ) - SUpxEC W-X (1)

The support function of the empty set is - everywhere. For nonempty C,
ac (M) > - - and may take the value + -; in Rockafellar's terminology, it is a
proper convex function4.

Many of the formulas of convex analysis can be simplified when they are
restricted to convex polyhedra and convex polyhedral functions. One such is
found in Corollary 16.4.1 of Rockafellar's book5 , from part of which we can
derive the following: Let Ci,..., Cm be closed convex polyhedra with nonempty
intersection C (also a convex polyhedron). Then

0(v) M min i1 aci i) (2)

subject toEm 1i - 1
i= 1

(The general version of the corollary is required if C is empty.) Rockafellar
terms the operation in (2) "infimal convolution", since for m = 2,
OCIfnC 2(p) -infX (aCI(X) + aC2 (V.-X)) a form reminiscent of integral convolutions.

Formulas (1) and (2) express aC (u) as the common optimal value of a pair of dual
convex programming problems:

Primal Problem:

Maximize Pix

subject to x c Ci, i-I ..... , .

Dual problem:

Minimize m2 Ci(i)

subject to m i P"
i-I

4. Ibid, p. 24.

5. Ibid, p. 146.

13
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Three solution cases arise:

I. CC (4) = - C is empty. The dual objective is unbounded below on

the dual constraint set.

2. - < aC (4) < + : C is not empty. The optimal value, viz C (), is
attained in both problems.

3. IC (p) - + : C is not empty. The primal objective is unbounded
above on the primal constraint set. The dual objective
is + - everywhere on the dual constraint set, (i.e.
aci (Wi) < -, i = I ..... m -> EiaI Ui 0 1.

Suppose that OC (p) is finite, and let x* solve the primal, vi*, iI.... m, the

dual. Then

1C (M) vu.x* (primal optimality)

(Eir Pij*)'x* (dual constraint)

M
i.i (li* " x*)

z1=I aCi (ui*) (primal constraints)

= 0C () (dual optimality)

It follows that

Pi* "x* = CI (Ui*), i-1l .... Im, (3)

or that pi* supports Ci at x*: 1i* is an outer normal to Ci at x*. The formula
is one way of expressing complementary slackness, since if x* c int Ci then i* 0,
while

C3  A

Figure 1 ILLUSTRATION OF DUAL OPTIMAL SOLUTIONS. ( 03* 0)

14
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if 41* - 0, then the constraint x e Ci can be dropped without altering the
solution. The set of constraints for which i* # 0 are active (binding)at the
optimum. (See Figure 1). There may be multiple solutions, each with a
different set of active constraints.

The usefulness of (2) hinges on picking the constraint sets Ci, i-1,...,m, to
be simple enough to permit easy evaluation of their support functions. Any convex
polyhedron can be expressed as the intersection of half-spaces, and any half-space
can be defined by a linear inequality. Let H: {x: I..x < bi, where p~ 0 0. Then

ub if V - u and u > 0,
O11 (V) = -otherwise.

In terms entirely of hyperplane constraints the primal and dual problems become

Primal problem:

Maximize P-x

subject to 41 - x < bi, i1.... m

Dual problem:

M-inimizeE _ ui bi
i=l1

subject to m ui 1 
-,

"i= 1

The sign constraints on ui avoid infinite values of the dual objective and keep
it linear so that both problems consist of optimizing linear functionals subject
to linear constraints. Alternatively we could omit the sign constraints and keep
the formulation in terms of support functions. This pair of problems also
illustrates the more general duality relationship cited in the INTRODUCTION. Let
Ai: X-R be defined by AiX: - pi " X. Then Ai*: R-M and Ai*u = uwi. Moreover,

ubi if u > 0,
C ( _ -, b i ]  ( u ) = I+ if u <0.

Thus the problems are expressible as:

Primal problem:

Maximize w.x

subject to Ai x c (.o, bi], i=l,...,m

Dual problem:

Minimize m b I
i-l (i

subject to Mj Ai* ui

15
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We may have two-sided constraints such as

b < i.x < b

(where b < G) defining a set S in X, which can be replaced by the pair of
constraints

L u'x_ I ,
_px< -b.

since

Omax fub, ub} if V - uI,
US() " I+ - otherwise,

and max tub, ub} is nonlinear in u (unless b - b), the dual of a problem with
two-sided constraints is nonlinear. Of course it is easy to relate the two-sided
and one-sided versions by using (2). Thus if u is the dual variable for the
constraint b < uix < b, u+ for u.x < b and u- for -.-x < -S,

then u M u+ - u- (4)

while if b 0 b either u+ or u- vanirshes (at the solution), so that

u+ = max {u,0}, - u- = min {u,O}. (5)

When b = b, only the difference u = u+ - u- is determined. An alternate
viewpoint in this case is that u is the dual variable for the linear equality
constraint w-x - b.

The pivoting operations of the dual simplex method can be thought of as
substituting one hyperplane bounding a half-space for another, and consequently
are better suited for the formulation in terms of one-sided constraints. The
relations (4) and (5) and some sign bookkeeping then make it easy to apply the
method to two-sided constraints. Explanations of the method without the sign
manipulations are more transparent. Accordingly in the next section only one-sided
constraints are considered.

16
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CHAPTER 4

DUAL SIMPLEX METHOD

In the previous sect' n no particular coordinates were used on X. Most LP
problems encountered are expressed in terms of coordinates with respect to some
particular basis for X, the coordinates then forming a set of independent
variables. (as indicated previously, LINOPT assumes such a formulation.) Thus,
with one-sided constraints, we get a pair of problems like the following, in
which we assume that the n independent variables xj, jEJ are included in the m+n
constrained variables xk, keK; i.e. JCK.

Primal problem:

Maximize x0 : jEJ cj Xj

subject to xk: = Ejej akj xj <_ bk, kEK.

(Note that aki = kj for keJ.)

Dual problem:

Minimize E keK uk bk

subject to Z keK uk akj m cj, jcJ

uk > 0, kEK.

Note that the n equations relating the dual variables uk , kEK can be written

explicitly for uj:

ZiFK-.j ui aij + uj = C

Thus in the dual problemui, iCK-J, are independent and uj, jEJ, are dependent.
Given some other subset J' of K for which xj, JEJ', are linearly independent,
we can transform the constraint relations so that xj, jCJ' are the independent
variables through which 'the primal problem is phrased. Given such as index set

V we can define a corresponding basic solution. For J the definition of a

basic solution is obtained by setting the independent variables xj, jEJ, and

ui, ieK^J, to their bounds and satisfying the constraint relations among the

variables; xk and Uk are the values of xk, uk at the basic solution.

x bj, JEJ (primary primal variables)

xi - Z jj aii bj, iEK-J (secondary primal variables)

uij - cj, JeJ (secondary dual variables)0j cj, I 3 (primary dual variables)ui = 0, icK~J

17
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The terms-primary and secondary have been introduced instead of independent and
dependent because one may wish to refer to the primary variables of the problem
as initially formulated as the independent variables. The split between primary
and secondary depends on the set J and changes with it. The secondary primal
indices are usually called basic indices in linear programming texts, since they
correspond to the indices for a column basis for the constraint matrix. This
terminology is a little inappropriate here, since LINOPT makes use of a row
basis corresponding to the complementary set of indices - the dual basic indices
in the usual description. The use of "basic" in this sense is avoided here to
prevent confusion.

Furthermore, in a problem with two-sided constraints the basic indices refer
to the indexing of the equivalent one-sided problem, not the indexing of the
two-sided problems, so that the basic variables for J would be xk and -xk
for keK-J and either xj or -x- (but not both) for jCJ. Alternatively we may
retain the "primary/secondary notation and supplement it with some way of
indicating whether a primary variable is at its upper or its lower bound. (The
program simply checks the solution value against the bounding values.

In a basic solution the primary variables satisfy the constraints placed on
them if all primal variables satisfy the constraints, the basic solution and J
are primal-feasible. If the dual constraints are satisfied, the basic solution
is dual-feasible. A basic solution which is both primal- and dual-feasible is
optimal. At a basic solution both primal and dual objective variables have the
value Ejej cjbj. The criterion for dual feasibility is simply that
cj ?0, jCJ.

The transformation of the constraint coefficients accompanying a change from
one set of primary variables to another can be performed explicitly when needed,
or it can be expressed in terms of a nonsingular matrix relating the variables.

There are two ways of doing this. Let x3 , jEJ and x,, j' cJ' be two
sets of primary primal variables. Set I = K-J, I' =K-J', and let xj be a
column vector whose entries are x j, jJ, etc. Using matrix notation the two
ways can be described as follows:

1. Solution for x1 ,

xI = Axj (A is m x n)

Rearrange columns to give:

B x1' = R xj,

with B a nonsingular m x m submatrix of (I -A]. Then x1 1 = B-lR xj,.

The columns making up B are a basis for the space spanned by the columns of
(I -A]
Applied to the dual:

UIA + Uj = C

UI'S + Uj'D C -

U!' SD -I + Uj' = C, where C C D- 1.

18
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The rows of D form a basis for the space spanned by the rows ofA.

2. Solution for xj and substitution:

X ]Xj

Rearrange rows to give:

[] I [1 XJ LDI 
Xj'

(S and D are the same as above.B-IR SD-1.)

For the dual:

[U1 Uji = U[I -A] + t0 C)
[Ut , Uj, l -Ut[B -RI + [C' Cjl
(lI , Uj,] = UI,[I -B-lR] + t0 i ]

where = Cj, + C1 , B-1 R and is the same as before. The inverse matrix
B- 1 is the product of elementary row operations; D- 1 is the product of
elementary column operations. Either one may be used to keep track of
changes. LINOPT uses D- 1 and generates coefficients and solutions from the
original constraint coefficients by:

[[: D-1 Xj

When a basic solution is changed, D-1 is updated by column operations. (We
have ignored x0 : assumme that OcK so that c is a row of [Al)

The dual simplex algorithm works with dual-feasible basic solutions. Given a
set J defining primary primal variables, J is altered by adding an index not in
J and dropping an index in J: a secondary variable replaces a primary
variable. The resulting changes in the constraint coefficients can be
accomplished by Gauss-Jordan pivoting. The indices entering and leaving J are
chosen in such a way that dual-feasibility is maintained and the objective
function value does not increase. Proof of convergence can be found in any
linear programming text.6 The procedure is:

I. Identify violated constraints: ' - (iEK-J: Xi >bi
2. If ' is empty, stop: basic solution is optimal.
3. Pick (by some heuristic) kFI'.
4. Identify constraints which can be dropped without being violated when xk

is set to bk: J': {jEJ: akj >o}
5. If J' is empty, stop: constraints are inconsistent.

0 For example, Hadley, op. cit, or Simmonard, op. cit.

19
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6. Identify subset of J' corresponding to constraints for which dual feasibility is
maintained when dropped: J" (JfJ': cj/akj -min (ci/akj)l.

7. Pick (while applying anticycling criterion, if desired) £ZJ".
8. Update solution: J: - JU{k} - (}. Update inverse D-1 by column

operations. Calculate new basic solution.
9. Go to 1.

The coefficients axg and cj are those corresponding to the current index set
J, not the original one in terms of which the problem is phrased, and are
calculated by post-multiplying an original constraint matrix row (or objective
row) by D-1.

In the program the heuristic used in step 3 is to pick the most violated
constraint. In step 7 a tie for t is broken randomly, a procedure which prevents
cycling almost surely.

I
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CHAPTER 5

EXAMPLES

TEST PROGRAM

A small test program to run the following examples is listed in Figure 2.
The lines between the call to LINOPT and the call to TABLO merely do some
cosmetic surgery on the output, replacing quantities near M in magnitude
(actually those >/M) by + R (machine infinities). Three examples are given,
with NAMELIST inputs and the outputs from the program. Note that in all three,
ROW and COL are defined to correspond to storage by rows, and the columns of the
array A contain the rows of the constraint coefficient matrix.

EXAMPLE 1

This example is essentially the problem discussed in Section 1-3 of
Hadley7, with slightly modified coefficients.

Maximize xs: - 5.0 x + 7.6 x2 + 8.0 x3 + 4.0 x 4

subject to xl >0, x2>0, x3>0, x4>0,

x5: - 1.5 x, + 1.2 x 2 + 2.4 x 3 + 1.2 x 4 < 2100,

X6: = 1.0 xl + 4.5 x2 + 1.0 x3 + 3.0 x4< 8000,

x7: = 1.5 x1 + 3.0 x2 + 3.6 x 3 + 1.0 x4 < 5000.

Op. cit
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NAMELIST INPUT:

$IN
IOBJ = 8
M 4,
N 4,
MIN - .FALSE.,
INVERT .TRUE.,
ITMAX 1 1000,
EPS - 0.,
ROW - 0, 10, 20, 30,
COL - 1, 2, 3, 4,
A(1, 1) - 1.5, 1.2, 2.4, 1.2,
A(1, 2) = 1.0, 4.5, 1.0, 3.0,
A(1, 3) - 1.5, 3.0, 3.6, 1.0,
A(1, 4) - 5.0, 7.6, 8.0, 4.0,
BL - 4*0., 4*-1.E100,
BU = 4*1.E100, 2100., 8000., 5000., 1.E100,
K = 1, 2, 3, 4, 5, 6, 7, 8,
X 4*0.,
$END

(Since the objective coefficients cj are all nonzero for the initial tableau,
it is not really necessary to preset x1, x2 , x3 and x4, as Example 2 will show).

Output:

TABLEAU

I BL(1) x(I) BU(I) T(I, 1) T(I, 3) T(I, 5) T(I, 7)
1 0.000 0.000 R 1.000 0.000 0.000 0.000
2 0.000 1625.000 R -.125 -.800 -.417 .500
3 0.000 0.000 R 0.000 1.000 0.000 0.000
4 0.000 125.000 R -1.125 -1.200 1.250 -.500
5 -R 2100.000 2100.000 0.000 .000 1.000 -.000
6 -R 7687.500 8000.000 -2.938 -6.200 1.875 .750
7 -R 5000.000 5000.000 -.000 .000 .000 1.000
8 -R 12850.000 R -.450 -2.880 1.833 1.800

The objective variable, x(8), is to be maximized. ITER = 10, IERR = 0.

The tableau gives information about the primary and secondary variables at the
final iteration. The primary variables are x1 , x3 , x5 and x7 . The rows of the
tableau give the coefficients of the variables expressed in terms of the
primary variables. Thus, x4 --1.125 x1 -1.2 x3 + 1.125 x5 -.5 x7 .
The dual variables are not printed explicitly but the nonzero ones can be
obtained from the objective row: u1 - -.450, u3 = -2.880, u 5 - 1.833,
u7 - 1.800. (For a minimization problem, these should be negated.)
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EXAMPLE 2

This problem also comes from Hadley8 . It is his Problem 8-5.

Minimize n4: - 3X1 -2x2 + 4X3
subject to xl >0, x2 >0, X3 >,

x5: = 3xi + 5x2 + 4x33,
x6: - 6x l + x2 + 3x 3 Z4,
x7: - 7x 1 - 2x2 - x3 <10 ,

xg: - x -2x2 + 5X3 > 3,
x9: - 4x1 + 7x2 - 2x3>2.

Input:

$I N
IOBJ - 4,
M 6,
N 3,
MIN - . TRUE.,
INVERT . TRUE.,
IT MAX 1000,
EPS = 0.,
ROW = 0, 10, 20, 30, 40, 50,
COL - 1, 2, 3,
A(l, 1) - 3., -2., 4.,
A(l, 2) = 3., 5., 4.,
A(t, 3) -6., 1., 3.,
A(l, 4) - 7., -2., -1.,
A(l, 5) 1 ]., -2., 5.,
A(I, 6) = 4., 7., -2.,
BL - 3*0., -I.EIO0, 7., 4., -1.E100, 3., 2.,
BU - 6*t.ELO0, 10., 2*I.E00,
K - 1,2,3,4,5,6,7,8,9,

$END

Output:
TABLEAU

I BLI) X(I) BU(I) T(I, 1) T(1, 5) T(I, 8)
1 0.000 0.000 R 1.000 1.000 0.000
2 0.000 R R -.333 .152 -.121
3 0.000 R R -.333 .061 .152
4 -R -R R 2.333 -.061 .848
5 7.000 R R -.000 1.000 .000
6 4.000 R R 4.667 .333 .333
7 -R -R 10.000 8.000 -.364 .091
8 3.000 3.000 R .000 0.000 1.000
9 2.000 R R 2.333 .939 -1.152

THE OBJECTIVE VARIABLE, X( 4), IS TO BE MINIMIZED.
ITER - 3 IERR - 0

8. Ibid., p. 267.
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This problem has an unbounded solution: X5 = + and the objective value
is - O0.

EXAMPLE 3

This example illustrates the solution of a dual problem.

Minimize E 9k-

subject to 3
Z9
k-3 k u k  I.

(The indexing starts at 3 for convenience.) Since there is no unit matrix in
the constraint coefficient matrix, we add artificial variables ul and u2 ,
which must vanish at the solution:

+ Zk 3 Uk =iU l + k3u

U2 + -9 kuk = I.=k=3

Noting that VUkl - max {-uk, uk} , we can transform to the primal problem:

Maximize xlO: - x1 + x2

subject to , i = 3, ... , 9, where
x3: = X1 + 3x2, X4 : = X1 + 4x2
X5sz = x1 + 5x2 ,  x16: = x I + 6x2x7Z = xl + 7X2, x.: = Xl + 8x2

X9: = X1 + 9x 2 .

The variables xl and x2, dual to artificial variables, are not constrained
directly.

Input:

$IN
IOBJ =10,

H 8,
N 2,
MIN - FALSE.,

INVERT .TRUE.,
ITRAX - 1000,
EPS - 0.,
ROW- 0, 10, 20, 30, 40, 50, 60, 70,
COL - 1, 2,
A(I, 1) = 1., 3.,A¢I, 2) 1 ., 4.,]
A(l, 3) 1., 5.,
A(l, 4) 1., 6.,
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A~t, 5) 1 ., 7.,

A(I, 6) 1., 8.,
A(I, 7) = 1.., 9.,
ACi, 8) = 1., 1.,
BL - 2*-1.EI00, 7*-1., -I.EIO0,

BU = 2*l.EIOO, 7*-l., l.E100.
K - 1,2,3,4,5,6,7,8,9,10,
X - 2*l.El00,

$END

Output:

I BL(I) X() BUMI) T(I, 3) T(I, 9)
1 -R 2.000 R 1.500 -.500
2 -R -.333 R -.167 .167
3 -1.000 1.000 1.000 1.000 -.000
4 -1.000 .667 1.000 .833 .167
5 -1.000 .333 1.000 .667 .333
6 -1.000 .000 1.000 .500 .500

7 -1.000 -.333 1.000 .333 .667
8 -1.000 -.667 1.000 .167 .833
9 -1.000 -1.000 1.000 .000 1.000
10 -R 1.667 R 1.333 -.333

The solution is obtained from row 10: u3 - 1.333, u9 = -.333, u4 ,....

u8 -0 • The minimal value is 1.667. (Obviously, the exact solution has u3
a 4/3, ug = -1/3.)
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CHAPTER 6

LISTIG

SURR:J'TINE LIOU.OOLU(~,.,C)LINOPT 2
cLINE 2)

-------------------------------------------------------------------- LIN.E
CLINE 4

C LINEAR PROGRA iIOC, BiY THE DUAL SlhPLEX ALOORIT'HA LINOPT A
C LINOPT

c LINOPT 6
f. PROBLEM~- LINOPT 7
c LIN01?T a

C INIMIZE OR OAXINIZE X(UOBJ) SUBJECT TO LINQPT
c LIr4OPT 10

CX(N+l) = SU.IiJ 1,.,) A(ROQ(l)+CI3L(J)) X*j) L10JOPf l
c A, LIHOPT in
C LINOFT ist
C BL( J? .LE. XkJ) .LE. RU(J), J L,.INN+ G L"P T 14

c FRHRDOCUMIENT;TIGN AND EXAhPLES OF USE CAN~ 3E FOUND IN~- LINQPT Is

c NS4C, R 80413,LINOPT, A FORTRAN ROUTINE FKR SL1GL4lQT 2
c IE R RGRA;'10aG PROBLE0S, BY J. . INOt LINOPT 21

SOcN LINO?T 2

C ARAS RE ASEDAS FORHAL PARAMETERS, SIMPLE VARI-ABLES AS LINOPT I
C ELEMCENTS OF THE COMniN BLQiCl\ IXXxL~i. LINOPT .
C LI?4OPT 2-7
C NUS-H FOLLOUING VARIABLES AND ARRAYS MUST BE DEFINED ON LUiO?.T I's
cENR LiiiOlsT 2?
C LINOPT 30
c 103J INDEX OF THE OBJECTIVE VARIAB~LE, (IHEGE) LIHOP'T 31
c (NOTE TRAT X(108J) IS ALSO CONSIDEREDI AS LINOPT 32)
c A CONSTRAINED VARIABLE.) LINOVT 3
C LINOPT 314
C ?JUHLER OF DEPENIENT IJARiABLES. u~EE)L ImJpr 3"

N fUiBER OF INDEPENLDENT V4ATABLES. (10ThEER LINOFT ;
L. LI Nif3?1' 37

ALUSE . F I; - NLG L IT F

j 27
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C iNVERi .TRUE. IF THE INVERSE OATRIX E LL%:ZL, Li2l T
C IS TO BE CALCULATED. LptO" 42
C .FALSE. IF E IS ALREADY SET TO T!iE W tERSE FOR L -
C THE BASIS DEFINED BY K. (FOR F;OPTjhI7ATIjj, Li;..'T
c INVERT SHOULD BE .FALSE. UNLESS .EINJERSION LIOT
C IS DESIRED.) LI i'JPT
C LIHOFT 47
C IhT 11 A .dXl:iUii N;&, DER OF iT ERATION O LLN E.. (3 A'LGE-) 'D T.
C CONTROL IS RETURNED TO THE CALLING LINOFT
C PROGRAr AFTER ITAX ITERATIONS. LINOPT 53
C LINOPT 51
C EPS ZERO TOLERANCE. CONSTRAINT VIOLATIONS ;REAL) LINOPT 52
C OR TABLEAU ENTRIES .LE. EPS IN mAGITUDE LINOPT 5
C ARE TREATED AS ZERO. LINOPT 54
C I.IHOPT 55
C A ARRAY CONTAINING THE COEFFICIENT MATRIX. (REAL) LINOPT 55
C ROW ROW INDEX ARRAY. (INTEGER) LI;4OPT 57
C COL COLUMN INDEX ARRAY. (INTEGER) LINOPT 53
C THE COEFFICIENT OF Xlj) IN THE EQUATION LIHOPT 5
C FOR X(N+I) IS A(ROW(i)+COL(J)). LINOPT 60
C EITHER (CASE 1) LINOPT ol
C ONE HAS 9ECTORS AROW1,...,ARGUM WITH LINOPT o2
C AROUI(COL(J)) THE COEFFICIENT OF X(J) LINOPT 63

C IN THE EOUATION FOR X(NII), i;, UHICH CASE LINOPT 64
C ROW(1) = LOCF(AROUI) - LOCF(A), I I,... ,, LiNOPT 65
C OR (CASE 2) LiNOPT 0&1
C ONE HAS VECTORS ACOLI,...,AC. UITH LINOPT 67
C ACOLJiROU(i)) THE COEFFICIENT OF X(J) LIODPT o3
C IN THE EQUATION FOR X(N+I), Ii WHICH CASE LINO.T
C COL(J) = LOCF(ACOLJ) - LOCF1A), J = I,...,i. L i1PT 7)
C (E.G. IF A IS DIMENSICNED FOR .10, ROIS LIiQFT

C AND THE COEFFICIENT MATRIX IS STCRED IN LIOPT 72
C THE FIRST M ROWS AND H COLUMNS OF A (CASE 2,f, LI7OPT
C ROW(il) =I, I I,...,M LINOPT 74
C COL(J) = (J-1)*mN, J I,...,N, LIHPT 75
C WHILE IF THE COEFFICIENT MATRIX iS STORED LINO.-T,7,

C TRANSPOSED IN THE FIRST N ROWS A;iD M COLU M.S LNI:OPT 77
C (CASE 1), LINOPT 7:
C ROU(I) z(-1)filN, I = 1 ..... i, L14OPT
C COL(J) = J, J =,...,N, LNLPT
C ROl AND COL MAY BE PERMUTED IN AN: CONVEHiENT LflGPT
C WAY.) LiNGF'T 32
C LINO'T 63
C BL ARRAY OF LOWER BOUNDS. (REAL) LINOPT ;4
C BLU ARRA OF UPPER BOU4DS. (REA,. Li: OC'T s
C LINOPT 8;
C 9 BASIC SOLUTION KEY. (iHTEOFR) 1Ii-GPT ,

C K, IN C06JU.CTION WITH X, SPECIFIE- A Lhr;']lz 7.
C PARTICULAR 3;S7C SLUTIO01. THE E :A S L ... -;7
C RELATING X(,iN i), I T ,...,. T L T,.2
C ) J,, . : I,...,M ; HE _ STF :Z.,, To
C CAO SE SOLVED FOR V4,!iQ C',B..,2r'3 -. L.'
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C VARIABLES (SECUNDARY VARIABLES i TE' S i.:"jPT
OF THE REMAiiING t VARIABLES (imAY . 94

C VARIA"LES). K, A PEOFTATI'N 07 '4 .... N+r), LiNO?T 95
C SPECIFIES SUCH A PART 1IN INTO PRTMARY Ar Lii iDT 96
C SECONDARl' VARIABLES. K(I),..., r4i ARE THE LIii02T 97

C INDICES OF THE PRiARY VARIABLES. K(N+I),..., LiNOPT
C K(N+A) ARE THE INDICES OF THE SECONDAR( LINOPT 99

VARIABLES. FOR THE DUAL *)ARIALE U') , L i:-T 100
c J ,...,+, PRIMARY AND SECONDARY INDICES LIjiOPT 101

C SWITCH ROLES, U(X(N )),...,U(K(N4M)) BEING LINOPT 102
C PRIMARY. A BASIC SOLUTION IS SPECIFIED BY LINO7T 103
C SETTING EACH PRIMAL PRIMARY VARIABLE TO LINOPT 104
C EITHER OF ITS BOUNDS AND EACH DUAL PRIMARY LINOPT 105
C VARIABLE TO ZERO. THE INPUT VALUES OF THE LINOPT 106
C PRIMAL PRIMARY VARIABLES ARE SUITCHED TO THE LINOPT 107
C OPPOSITE BOUND IF NECESSARY I GRDER TO CREATE LINOPT 108
C A DUAL-FEASIBLE BASIC SOLUTION. LIHOPT 109
C LINOPT 110
C X PRIMAL SOLUTION ARRAY. (REAL) LINOPT I11
C X(K(J)) MUST BE SET TO EITHER BL(K(J)) OR LINOP I12
C ?U(K(J)), J 1,...,N. THESE ARE CEFAULT LIMOPT 113
C VALUES TO BE USED UHEN A VANISHI'G U(9(J)) LINQPT 114
C MAKES X(K(J)) INDETERMINATE IN SETTING UP LINOPT 115
C A DUAL-FEASIBLE SOLUTION. LINOPT 116
C LINOPT I I
C OUTPUTS--THE FOLLOWING VARIABLES AND ARRAYS ARE DEFINED LiN4DT 113
C OR REDEFINED ON EXIT LINOPT 119
C LINOPT 120
C ITER NUMBER OF ITERATIONS SINCE THE LA3T (INTEGER) LINOPT 121
C INVERSION. Lli4QPT 122

c LINOPT 123
C IERR ERROR FLAG. (INTEGER) LINOPT 124
C IERR = 0--OPTINUM FOUND. LINOPT 123
C I--INCONSISTENT CONSTRAINTS. LINOPT 126
C 2--ITERATION LIMIT REACHED. LIKOPT 127

C 3--INVERSION FAILED (BAD INITIAL BASIS). LINOPT 123
c LINOPT 129
C K BASIC SOLUTION KEY, (INTEGER) LINOPT 130
C SET FOR THE CURRENT BASIS. LINOPT 131
C LINOPT 132
C X PRIMAL SOLUTIQN ARRAY. (REAL) LINOPT 133
C LINOPT 134
C U DUAL SOLUTION ARRAY. (REAL) LINOPT 133
C U(J) IS THE DUAL VARIABLE (LAGFA GE LINOPT '36
C fMULTIPLIER) FOR THE CONSTRAINTS ON X(J). LINOPT 137
C IT IS POSITIVE IF THE UPPER BOUND IS ACTIPE, LIOT 138
C NEGATIVE IF THE LOWER BOUND IS ACTiUE. LINOPT 137
C Li0OT 1I4
C E INVERSE MATRIX ARRAY. (REAL) LiHCtT 4 1

SX(1) : SUM (J E I,. ,; E~ ,] X(K J ) Or I . 1' 142
C [ = ,...,N L t] 7 14
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c
C sC R (ALIAS AROW :N SUBROUTI:NES) SC ;RTlh ARRA(. LiOT 14
C L I 1 op a.26
C L_(rP T 147
C LI;r-PT 14?
C AINPIUA DECLARED ARRAY SIZES- LINOPT 11?
C L iNOPT 150
CA LINOJT 1 Z
C ROU A LINOPT 152
C COL N LINOPT 133
C BL " + N LINOPT I5A
C BU M + N LINOPT 155
C m( + N LI.OPT 156
C X N + N LINOPT 157
C U I + N LIOPT 15
C E N * N LINOPT 157
C SCR N LINOPT 160
C LINOPT 161
C LINOPT 162
C LINOPT 163
C SUBROUTINE TABLO (G.V.) PRINTS THE FULL EXPLICIT TABLEAU. LIROPT 164
C IT IS NOT CALLED THROUGH LINOPT AND MUST BE CALLED SEPARATELY. LINOPT BS5
C LINE 2
C ------------------------------------------------------------------LiE 3
C LINE 4

DliIENSION BL(i), BU(I), K(W), X(1), U(I), SCR(!) LINOPT 167
LINOPT 168

CONON IXXXL?/ IOBJ, M, N, MIN, INVERT, iTA, EPS, iTER, IERR /XXXLP/ 2
COM1MON iXXXLPi HPI, NPM, IPIV, JPIV, .EGP /XX LF'? 3
COMN ON IXXXLP/ BIGM /XXXLP/ 4
LOGICAL iIN, INVERT, NEGV /XXXLPI 5

C LINE 2
C ---------------------------------------------------------------------- LiNE 3
C L!NE 4
c THE VARIABLE BIGM REPRESENTS A VERY LARGE NiW*ER. THE DEFAULT LINOFT 1i
C VALUE IS I.EIO0. THE USER MAY RESET THIS VALUE IF SO DESIRED. ;.IiKPT '
0 BIGM OR -BIGh MAY BE USED TO FILL IN IISSING 6PER OR LOWER LI,')OPT 173

C BOUNDS. I.10OPT 174
C LINOPT i

DATA BIGM /I1E100 i LIi4OPT ;7'
C LINE
C ------------------------------------------------------------------- LiN4E
C LINE

NPI = N + I L1O1T 1,"5
NPm = N + M L i4GP7 17
IF (.NGT. INVERT) GO TO 10 LI iJPT 1 :3

CALL SETINV(A,ROW,COL,K,E,SCR) LIrNOPT 11;
IF (IERR.E-.3) RETURN LN0 F'T i 32

t) CO3TIUE L 'IT 'i]3
CALL GETRO.;(A,FtOIW,COL,E,IOBJ,SCRI L ICPT 1:
DO 5) J 1, 0 i_7,,

30
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IF (iJ(iJ)) 20, 40, 30 L I CT .11
CNEGATIVE LbOP'FT 7?0

20 CONTINUE LI4;QPT 1?!
M(J) = BL(9J) L.INOP 192
00 TO 4') LIA0?T 1,?3

CPOS3171E i 1A 3 p 194
30 CONTINUE LI-40PT 195

X(KJ) =BU(KJ) LINOPT 196
40 CONTINUE LINOPT 197,
5 k CONTINUE LINOPT 19a

DO 6-, J =NPI , NPII LIiN0PT 1?9
U(K(J)) z 0. LIHOPT 200~

60 CONTINUE LANOPT 201
CALL PSOL(A,POU,COL,K,X,E) LINOPT 202
CALL D5INP(A,RO)J,COL,BL,BU,X,X(,U,E,SCR) LIHO*f 2403
IF (IERR.NE.0) 60 TO 110 LI0PT 204

C ROUND X-VALUES IJITHIN EPS OF BOUNDS LINOFT 205
DO 100 1 c 1, NPH LINOPT 206

IF (ABS(X(I)-BL(l))LLE.EPS) X(I) = L4I) LINOPT 207
IF (ABS(X(I)-BU(Ifl.LE.EPS) X(I) =BUMt LINOPT 208

100 CONTINUE LIHOPT 209
110 CONTINUE LINOPT 210

REUNLINOPT 21,
END L I NOP' 212
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SUBROUTINE DSiTiP(A,ROU,COL,BL,DU,K,X,U,E,AROU) VEIiNP
C LINE
C------------------------------------------------------------------- LINE 7
C LINE 4
C DUAL SIMPLEX ALGORITHM I M P 4
C LIN4E 2
C ---------------------------------------------------------------------- LIE 3

C 7!EDIMENSION BL(1), SU(i), W )l , X(1), U(1), AROW(l) DSIliP
C DSImlP 7

COMMON /XXXLP/ IOBJ, M, N, NIN, INVERT, ITNAX, EPS, ITER, IERR /XXXLP/ 2
COMMON /XXXLP/ NPI, NPA, IPIV, JPIV, iEGV /XXXLP/ 3
COMMON /XXXLP/ @IG? IXXXLPI 4
LOGICAL MIN, INVERT, NEGV /XXXLP/ S

C LINE 2
C ---------------------------------------------------------------------- LINE 3
C LINE 4

IERR z 2 DSIM P 1
C UHEN iTMAX.LT.I THE LOOP IS PARTIALLY EXECUTED - DSIMP 11

DO 100 I2 = 1, ITHAX DSIMP 12

CALL PIVROU(BL,DU,K,X) DSIMP 13
IF (IPIV.GT.0) 60 TO 10 DSINP 14

C NO PIVOT ROU INDICATES THAT X IS OPTIMAL DSIMIP 13
IERR z 0 DSIHP 16
RETURN DSIMP 1;'

10 CONTINUE DSIP 13
XROW a X(IPIU) DSIHP
CALL GETROU(A,ROU,COL,E,XROU.AROW) DSIHP 20
CALL PIVCOL(BL,BU,K,X,U,AROU) DSIMP
IF (JPIV.GT.0) GO TO 40 DSIhP

C NO PIVOT CCLUMN INDICATES THAT THE CONSTRAINTS DSImP 23
C ARE INCONSISTENT DSIiiP

IERR =SINP 25
RETURN DSIiP 26

40 COHTINUE DSIMP 27
IF (ITNAX.LT.1) RETURN -sI I 23

C NEU SOLUTION KEY Ds!ip 2
K(QPIV) = K(JPIV) .SIlP

K(JPIV) = KROU DSIil 31
CALL NEUINV(E,AROC) DSIiiP 32

C NEV DUAL SOLUTION DSIIP 23

CALL GETROU(A,ROU,COL,E,IOBJ,AROW) DSI1P 34
DO 70 . = J, N OSI iP 35

IF (MIN) AROU(J) = -AROW(J) DSIiiP 36
U(K(J)) AROU(J) DSI.P 37

70 CONTINUE DSIMP 33
U(K(IPIv)) 0 . DS iiiP 0

C NEV PRIMAL SOLUTION DS31IP 41j
X(KROW) 2U(KROU) B31:i9 ii

iF (NEGV) X(U:OU) BL(KROW) ;: .' -'

CALL PSD'!A,,1U,CG,K,X,EJ I,'
T IR !TER + I *: ; :

32
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RETURN
EN D

33
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SU.ROUTINE PIVROW(L,BU,K,X) RI'RG 2
C LI: E "

C- LI: E
c LiiIE
C PIVOT RO4 SELECTION P111".O'
c LINE 2

C ...........................................................- LINE 5

DIMENSION DL(1), BU(1), KW), X(1) PIROU 6
C ?IVROt 7

COWtON /XXXLP/ IBJ, N, N, IIN, INVERT, ITiAX, ES, ITE., IERP /XXXLP/
CONhON IXXXLP/ NPt, HP$, IPIV, JPIV, NEGV /XXALP/

COMMON /XXXLP/ BIGN /X.(XLP/ 4

LOGICAL MIN, INVERT, NEGV /XXXLP/ 5
c LI' E 2

C LINE

I'pIV a 0 PIJRou 1)
IF (NPN.LT.NPl) RETURN PIVO,
VIOL = 0. PIVROU 12
DO 50 II z NP1, %PH PiVROU 13

I = K(II) PiVRpl^ 14 !
C CHECK CONSTRAINTS ON X(I) PIVROU V5r

D XCl) - BL(I) PIVROJ 16

IF (D.OE.-EPS) GO TO 10 pilipUw t
a = -D pilip-lu
IF (VIOL.GT.D) OD TO 40 PIVROU 1?
VIOL z D Pi')ROi :0
IPIU z II Pi'JROU
NEGV z.TRUE. PIVFrjU
go TO 40 PIVROU 23

10 CONTINUE PI'lRow :-
D X)(l - ?of!) PZV''Ou 23
IF (D.LE.EPS) GO TO 30 F'IVROU 2

IF (VIOL.GT.D) 00 TO 40 PitjRol 27
VIOL = DPIwo'

IPIV z II Pi:,,v* r u
NEOV zFALSE. Piu

30 CONTINUE P I0 :4 31

40 CONTINUE PIVRJo 32
30 CONTINUE P!RD.,i UI

RETURN PI'ArJ
EN& PiVROu .
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SUBROUTINE PciCL (iL,U.K,X,UJROd) PIVC L 2
C l.AHE2

C LIAE 4

C PIVOT COLUMN SELECTION F4CL
C LINE 2
C ---------------------------------------------------------------------- LINE 3
C LINE 4

DIMENSION BL(1), BU(I), K(1), X(l), U1), AROW(1) PIYCOL 6
C PIVCOL 7

COMMON /XXXLP/ IOBJ, N, N, MIN, INVERT, ITMAX, EPS, ITER, IERR /XXXLP/ 2
COMMON /XXXLP/ NP1, NP?1. IPIV, JPIV, NEGV /XXXLP/ 3
COMMON /XXXLPi BIGN /XXXLP/ 4
LOGICAL MIN, INVERT, NEGV /XXXLP/ 5

C LINE 2
C ---------------------------------------------------------------------- LINE 3
C" LINE 4

JPIV = 0 PIVC0L 10
= BIGA PIYCOL It

DO 30 JJ = 1, N PIVCOL 12
J = K(JJ) PIVC]L 13
AA = AROU(JJ) PIVCOL 14
IF (NEGV) AA z -AA PIKCOL 15
IF (AA.GE.O. .AND. X(J).EQ.BL(J)) 00 TO 20 PIYCOL 16
IF (AA.LE.O. .AND. X(J).EQ.BU(J)) GO TO 20 PIVCOL 17

R = U(J)iAA PIYCOL 18
IF (R.GT.U) GO TO 10 PIVCOL 1?
IF (R.EQ.U .AND. RANF(AA).GT.O.5) GO TO 10 PIYCOL 20

JPI) JJ PIVCOL 21
U = R PIVCOL 22

10 CONTINUE PIVCOL 23
2') CONTINUE PIVCOL 24
30 CONTINUE PIVCOL 25

RETURN PIVCOL 26

END PIVCOL 27
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SU.IROUTINE GETROU(A,ROU,COL,E,KROU,AROU) 1ET R]3

C L i ;;-"

c L 7i4E

C GENERATION OF CONSTRAINT COEFFICIENTS FOR THE CURRENT BASIS EThOU 4

c LINE 2

C ---------------------------------------------------------------------- LIl E 3

c LIhE 4

DIMENSION A()), ROU(1), COL(1), E(U), AROW(1) GETROU
INTEGER ROW, COL GETROU 7

c GETROU 3

COMMON /XXXLP/ IOBJ, M, N, MIN, INVERT, ITMAX, ES, ITER, IERR /XXXLP/ 2

COMNON /XXXLP/ NPI, NPM, IPIV, JPIV, NEGV /XXXLP/ 3

COMMON /XXXLPI BIGH /XXXLP/ 4

LOGICAL MIN, INVERT, NEOV /XXXLP/ 5
C LINE 2

C -------------------------------------------------------------------- LI;'E 3

c LINE 4

IF (XROU.GT.N) 60 TO 20 GETROU 11

C ORIGINAL INDEPENDENT VARIABLE. GET ROU KRO4 OF THE INVERSE. GETROU 12
JJ = 0 GETROJ 13

DO 10 J = 1, N GETROU ;-

AROU(J) = E(KROU+JJ) GETROU 15

IF (ABS(AROU(J)).LE.EPS) AROW(J) 0. GETROJ 10
JJ = JJ + N GETROW 17

10 CONTINUE GETROU 13

60 TO 50 GETROU I?

20 CONTINUE GETRr )u 2.)
C ORIGINAL DEPENDENT VARIABLE. GETRU -

C hULTIPLY ORIGINAL ROW BY THE INVERSE. GETRO' 2
KK = ROW(KROU-N) GETR4J :3

JJ = 0 GETR-) 2
DO 40 J z 1, N GETRO'J

AROU(J) = 0. GETROW

DO 30 1 = 1, N GETF:- :
AROW(J) = AROW(J) + A(KX+COL(I))*E(I+JJ) GETROU :3

30 CONTINUE GETROU
IF (ABS(AROW(J)).LE.EPS) AROW(J) = 0. G0ITRO "
JJ = JJ + N GETROJ 31

40 CONTINUE GETRO '

50 CONTINUE GET.iw 33

RETJRN GE Ti "2 '4

END GETR 1 33
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SUBROUTINE PSDL(A,ROU,C0L,K,(,E) PS L 2
C LINE 2

C LI NE
C PRIMAL SOLUTION P;OL 4
C LINE 2

C LINE 4
DIMENSION A(l), ROW(l), COL(l), K(I), X(1), E(l) PSOL 6
INTEGER ROU, COL PSOL 7

C PSOL 8
COMMON IXXXLP/ IOBJ, M, N, MIN, INVERT, IThAX, EPS, ITER, IERR IXXXLP/ 2
COMMON /XXXLP/ NPI, NPM, IPIV, JPIV, NEGV iXXXLP/ 3
COMMON /XXXLP/ BIGM /XXXLP/ 4
LOGICAL NIN, INVERr, NEGV /XXXLP/ 5

C LINE I

C -------------------------------------------------------------------- LINE 3
C LINE 4

DO 30 1 NP1, NPH PSOL II
KI = K(I) PSOL 12
IF (KI.GT.N) GO TO 20 PSOL 13

X(KI) 0 0. PSOL 14
jj z 0 PSOL 15

DO 10 J I, N PSOL 16
X(Ki) X(KI) + E(KI+JJ) X(K(J)) PSOL 17
JJ = JJ + N PSOL 18

10 CONTINUE PSOL 1?
20 -CONTINUE PSOL 20
30 CONTINUE PSOL 21

DO 60 I = NP1, NPm PSOL 22
KI = Ki) PSOL 23
IF (KI.LE.N) GO TO 50 PSOL 24

X(KI) = 0. PSOL 25
KK = ROU(KI-N) PSOL 26
00 40 J 1, N PSOL. 2;7

X(KI) X(KI) + A(KR+COL(J)) * X(J) PSOL 23
40 CONTINUE PSOL 2?
50 CONTINUE PSOL 30
60 CONTINUE PSOL 31

RETURN PSOL 32
END PSOL 33
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SJ3ROUTINE SETIV,ROU,COL,KE,ARO B SET N') 2
C LINE 2
------------------------------------------------------------------- LTIE
C L1.4E 4
C INITIAL INVERSE SETmTV 4
C LINE 2
C ---------------------------------------------------------------------- LINE 3
C LINE 4

DIMEN3ION K), E(l), AROU(I) SETI1AV
C SETINV 7

COMMON /XXXLP/ IOBJ, M, N, MIN, INVERT, ITMAX, EPS, ITER, IZRR /XXXLP/ 2
COMMON /XXXLP/ NPI, NPM, IPIV, JPIV, NEGV /XXLP/ 3

COMMON IXXXLP/ SIGN /XXXLPi 4
LOGICAL MIN, INVERT, NEGY /XXXLP/ 5

C LINE 2
C ---------------------------------------------------------------------- LiNE 3
C LINE 4
c SET E TO THE IDENTITY SETINV 10

JJ = 0 SETINV 11
DO 20 J z 1, N SETIRV 12

DO 10 I = 1, N SETIiV 13
E(I+JJ) = 0. SETliNJ 14

10 CONTINUE SETi1fQ 15
E(J+JJ) = 1. 3ETINV Is
JJ = JJ + N SET V ;7

20 CONTINUE SETINV i
C GENERATE INITIAL INVERSE SETiNV 1?

DO 30 J = 1, 0 SETINV 20
K(J) = -K(J) SETI.49 21

30 CONTINUE SETIN') 22
DO 90 JJ = 1, H SETINV 23

DO 40 J = 1, N SETINV 24
IF (K(J).LT.0) GO TO 50 SETI~iV 25

40 CONTINUE SETINV 21
50 CONTINUE SETIV 27

KROW= -K(J) SETiNV -3
CALL GETROU(A,ROW,COL,E,KROW,AROW) SETZIV 2

POuIAX= 0. S,- TI 30
DO 70 L 1, N SETINV 31

TEST ABS(AROW(L)) SETIhV 32
IF (K(L).GT.0 .OR. TEST.LT.ROUMAX) GO TO .60 3ETIiV 33

ROWhAX = TEST SETI; V 3I
JPIV = L SETINV 35

60 CONTINUE SETI7V 3
'70 CONTINUE SETINV 37

IF (ROUNAX.GT.O.) GO TO 80 SETIIY,' 38

IERR = 3 STiNV 37
RETURN SETIV

so CONTINUE SETI;iv 41
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K~j) = xJPIV) ~E TIP 424,
K(JPIV) = ROW SET T.,,j 4.3

CALL NEWINV(E,AROW) S5:-TIN4Y 44

90 CONTINUE SEIINV 45
ITER =0 SETINV 46
RETURN SETIRVY -

.N3 Tl 3.AT Q 48
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SU3ROUTINE NEWINV(E,AROIJ) 2
C L I NE

C LINE 4
C INVERSE UPDATE BY COLUMN OPERATIONS rEWINV 4
C LINE 2
0 ---------------------------------------------------------------------- Li;E 3
C LINE 4

DIMENSION E(l), AROW(l) iEUINV 6
C NEWINV 7

COMMON /XXXLP/ IOBJ, M, N, MIN, INVERT, ITMAX, EPS, ITER, IERR /XXXLP/ 2
COMMON /XXXLP/ NPI, NPH, IPIV, JPIV, NEOV /XXXLP/ 3
COMMON /XXXLP/ BIGA /XXXLP/ 4

LOGICAL MIN, INVERT, NEGV /XXXLP/ S
C LINE 2
C ----------------------------------------------------------------- LINE 3
C L IR E 4

JJPIV = JPIV-I)*N NEWINV 10
DO 20 1 = 1, N NEWiINV 11

EPIV = E(I+JJPIV)/AROW(JPIV) NEUINV 12
JJ = 0 NEUINV 13

DO 10 J = 1, N " NEVINV 14
E(I+JJ) = E(I+JJ) - EPIV*AROUJ(J) NEWJIN9 15
JJ = JJ + N NEQINV 16

10 CONTINUE NEWINJv 17
E(I+JJPIV) EPIV NEWINV 1

20 CONTINUE NEUINV 19
RETURN NEWINV 20

END NE4INV 21
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SUBROUTINE TMaLO(A,RO,COL,BL,BU,K,X,E,SCR,-Da T eL0
C L 1E
------------------------------------------------------------------------- 3

C LINE 
C TABLEAU PRINTOUT TABLO 4
C TABLO 5
C KORD IS AN ARRAY OF LENGTH AT LEAST N USED FOR REORDERING TALO 6
C X(1),...,K(n) IN ASCE.4DING ORDER. 7.i3LD 7
C SEE LINOPT FOR DESCRIPTIONS OF THE OTHER PARAMETERS. TABLO 8
C TABLO 9
C LINOPT MUST HAVE BEEN CALLED BEFORE CALLING TAiLO. TABLO 10
C LINE 2

C ---------------------------------------------------------------------- LINE 3
C LINE 4

DIMENSION A(I), ROW(I), COL{I), BL(l), BU(1), X(1), X(1), E(l) TABLO 12

DIMENSION SCR(1), KORD(1) TABLO 13
INTEGER ROW, COL TABLO 14

C TABLO 15
COMMON /XXXLP/ IOBJ, M, N, MIN, INVERT, ITMAX, EPS, ITER, IERR IXXXLP/ 2

COMMON /XXXLP/ NPI, NPM, IPIV, JPIV, NEGV XXXLP/ 3
COMMON iXXXLP/ BIGM /XXXLP/ 4
LOGICAL MIN. INVERT, NEGV /XXXLP/ 5

C LINE 2
C ---------------------------------------------------------------------- LINE 3
C LINE 4

1 FORMAT (IHI//T55,,NT A B L E A U*ilIX,* I *,5X,*BL(I)*, TABLO 18
/ 6X,*X(I)*,BX,*BU(I)*,IX,lOAIO/(36X,IOAIO)) TABLO 19
2 FCRMAT (IHO,13,IX,3FI0.3,1X,IOFIO.3/(36X,1OFIO.3)) TABLO 20
3 FORMAT (2X,*T(I,*,I3,.I)*) TABLO 21

4 FORMAT (///IHO,*THE OBJECTIVE VARIABLE, X(*,13,*), IS TO BE *,A1O) TABLO 22

C LINE 2
C ---------------------------------------------------------------------- LINE 3
C LINE 4

DO 110 J = 1, N TABLO 24

KORD(J) = J TABLO 25

110 CONTINUE TABLO 26
DO 130 J =, N TABLO 27

J"IN z J TABLO 2

DO 120 JJ = J, N TABLO 29

IF (K(KORD(JJ)).LT.K(KORD(JMIN))) JMIN JJ TABLO 30
120 CONTINUE TABLO 31

XTEAP = KORD(J) TABLO 32
kORD(J) = KORD(JNIN) TABLO 33
KORD(JMIR) = KTEOP TABLO 34

130 CONTINUE TABLO 35
DO 10 J = 1, N TABLO 36

ENCODE (I0,3,SCR(J)) K(KORD(J)) TABLO 37
10 CONTINUE TABLO 38

PRINT 1, (SCR(J), J = 1, N) TA1LO 3?
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DO 20 I =I, NPH ~O 4
CALL GETROU(A,ROIU,COL,E,I,SCR) TABLD 41
PRINT 2, 1. BL(I), X(I, BU(I), (SCR(KORDI(j)), i 1, N) T~O 4

20 CONTINUE TA8LO 43
OPT = 10OAXIMIZED. TABLO 44
IF (HIM) OPT IOHNININIZED. TABLO 45
PRINT 4. I03J, OPT T.ABLO .
RETUtRe$ TABLO 47
END TABLO 48
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